学术论坛News
学术论坛News
分享到:
商学院卓越学术讲坛2022年第十九期暨数据科学系列讲座第1讲
发布日期 :2022-11-21

讲座题目:Image Network and Interest Group – A Heterogeneous Network Embedding Approach for Analyzing Social Curation on Pinterest

  

主 讲 人:马力烨

  

讲座时间:2022年11月23日(周三)10:00

 

腾讯会议:会议号982-499-568

 

主讲人介绍:

马力烨博士是马里兰大学史密斯商学院的终身教职副教授,主要讲授大数据与人工智能、数据科学等课程。他的研究利用统计计量以及机器学习等方法分析数字经济下的消费者行为及其与企业的互动,并据此帮助企业制定营销策略,马教授的多项研究成果发表于营销领域顶级期刊,如Marketing ScienceJournal of Marketing ResearchJournal of MarketingManagement Science等。马教授目前还担任营销领域权威期刊International Journal of Research in Marketing的AE,顶级期刊JMR、JM的编委会成员。马教授的研究曾获得Marketing Science InstituteWharton Customer Analytics Initiative的研究支持,论文还曾入围John D.C. Little最佳论文奖。

  

讲座摘要:

Social curation platforms help consumers navigate through vast digital content online. Analyzing a large dataset from the popular image curation site Pinterest.com, this research aims to understand: (i) what users’ curation activities reveal about consumer preferences, content characteristics, and brand perceptions; (ii) how to assess the user-content match and predict curation actions; (iii) how well does social curation site facilitate information discovery.

We propose a novel approach with two components. First, we represent social curation using a heterogeneous information network. Images, users, and curation words are represented as nodes, while edges represent curation actions. Second, we leverage heterogeneous network embedding, a recently developed machine learning method, to map the network to lower-dimensional vectors for analysis while preserving its structural and semantic information.

Our proposed approach significantly outperforms prevailing benchmarks on predicting curation actions. It uncovers user interest groups and image clusters with distinct characteristics, characterizes the user-image matching, and generates insights into brand perceptions and opportunities. Furthermore, analysis shows that social curation activities account for 70% of the information content at the site, while algorithm bias is not evident. We are the first to study social curation using an information network approach, and our study provides ready-to-use tools for managers.

  

  

  

上一篇:商学院卓越学术讲坛2022年(第十九期)暨数据科学系列讲座 第1讲 下一篇:商学院卓越学术讲坛2022年第十八期

关闭

联系地址:中国北京市海淀区学院南路39号 中央财经大学商学院 电话:86-010-62288081
Copyright (C) 2015 中央财经大学商学院